Angiogenin contributes to bladder cancer tumorigenesis by DNMT3b-mediated MMP2 activation

نویسندگان

  • Rafael Peres
  • Hideki Furuya
  • Ian Pagano
  • Yoshiko Shimizu
  • Kanani Hokutan
  • Charles J. Rosser
چکیده

Epigenetic-mediated gene activation/silencing plays a crucial role in human tumorigenesis. Eliciting the underlying mechanism behind certain epigenetic changes is essential for understanding tumor biology. Previous studies in human cancers revealed an unrecognized interplay between Angiogenin (ANG) and matrix metalloproteinase-2 (MMP2) leading to pronounced tumorigenesis. Here we provide multiple lines of evidence further indicating ANG oncogenic potential. ANG expression resulted in the hypomethylated state of the MMP2 gene, which led to increased gene expression of MMP2. More than that, our global DNA methylation microarray analysis showed that gene manipulation of ANG affected a variety of pathways, such as cell migration, angiogenesis and specifically, tumor suppressor genes. Mechanistically, ANG negatively regulated DNA methyltransferase 3b (DNMT3b) enzymatic activity by down-regulating its expression and inhibiting its recruitment to the MMP2 promoter. Consistent with this, ANG-MMP2 overexpression and DNMT3b underexpression correlated with reduction in disease free survival of human bladder cancer patients. Together, the results continue to establish ANG as an oncoprotein and further reveal that ANG contributes to oncogenesis by the activation of MMP2 through modulation of DNMT3b functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of 5- azacytidine (5-aza-CR on the expression of DNMT1, DNMT3A, DNMT3B, p14ARF, p16INK4a, and p15INK4b, cell growth inhibition and apoptosis induction lung cancer A549 cell line

Background and aim: Lung cancer is one of the most leading causes of cancer death in males and females and the second leading cause of cancer death. Epigenetic alterations, including DNA hypermethylation, histone deacetylation, and miRNAs lead to the silencing of tumor suppressor genes (TSGs) resulting in tumorigenesis. This change has been reported in various cancers. The activity of DNA meth...

متن کامل

∆ DNMT3B4-del Contributes to Aberrant DNA Methylation Patterns in Lung Tumorigenesis

Aberrant DNA methylation is a hallmark of cancer but mechanisms contributing to the abnormality remain elusive. We have previously shown that ∆DNMT3B is the predominantly expressed form of DNMT3B. In this study, we found that most of the lung cancer cell lines tested predominantly expressed DNMT3B isoforms without exons 21, 22 or both 21 and 22 (a region corresponding to the enzymatic domain of...

متن کامل

Study of the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of CDH1, GSTP1 genes in MDA-MB -453 cell line

Promoter methylation is one of the main epigenetic mechanisms that lead to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifi...

متن کامل

Study of the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of CDH1, GSTP1 genes in MDA-MB -453 cell line

Promoter methylation is one of the main epigenetic mechanisms that lead to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifi...

متن کامل

DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation.

Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016